
FPGA Implementation of Point Multiplication on Koblitz
Curves Using Kleinian Integers

V.S. Dimitrov1 K.U. Järvinen2 M.J. Jacobson, Jr.3

W.F. Chan3 Z. Huang1

1Department of Electrical and Computer Engineering, University of Calgary, 2500 University
Drive NW, Calgary, Alberta, Canada T2N 1N4, (dimitrov,huangzh)@atips.ca

2Signal Processing Laboratory, Helsinki University of Technology, Otakaari 5A, 02150,
Espoo, Finland, kimmo.jarvinen@tkk.fi

3Department of Computer Science, University of Calgary, 2500 University Drive NW,
Calgary, Alberta, Canada T2N 1N4, (chanwf,jacobs)@cpsc.ucalgary.ca

October 13, 2006

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 1 / 13

Introduction

Koblitz Curves

Koblitz curves (defined over F2):

Ea : y2 + xy = x3 + ax2 + 1, a ∈ {0, 1}

|Ea(F2m)| easily computed for any integer m > 0

Frobenius endomorphism τ(x , y) = (x2, y2) for (x , y) ∈ Ea(F2m) :

almost free to compute

satisfies minimal polynomial x2 − µx + 2 = 0 where µ = (−1)1−a

can view τ as a root, i.e., τ = (µ +
√
−7)/2

leads to efficient τ -adic point multiplication algorithms (eg. τNAF)

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 2 / 13

Theoretical Results

Double Base Expansions

Dimitrov, Jullien, Miller (1998): compute kP using k =
∑
±2a3b

requires only O(log k/(log log k)) (2, 3)-integers

find closest ±2a3b to k, subtract and repeat

Our contribution: efficient point multiplication on Koblitz curves

first provably sublinear point multiplication algorithm (3 complex
bases)

efficient method using bases τ and τ − 1 (no proof, conjectural
sublinearity)

no precomputations based on k or P

efficient FPGA implementation

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 3 / 13

Theoretical Results

Kleinian Integer Expansions

Kleinian integers: x + yτ ∈ Z[τ]

(τ, τ − 1)-Kleinian integers: ±τ a(τ − 1)b

(τ, τ − 1, τ2 − τ − 1)-Kleinian integers: ±τ a(τ − 1)b(τ2 − τ − 1)c

Theorem: k ∈ Z[τ] can be represented by a sum of
O(log N(k)/(log log N(k))) (τ, τ − 1, τ2 − τ − 1)-Kleinian integers

Conjecture: same for (τ, τ − 1)-Kleinian integers

Proof for bases 2 and 3 doesn’t generalize (only for real bases)

Greedy algorithm doesn’t generalize well:

hard to find closest (τ, τ − 1)-Kleinian integer to k

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 4 / 13

Algorithms

Conversion Algorithm

Compute k =
d∑

i=1

±τ ai (τ − 1)bi for k ∈ Z[τ]

Precomputation: minimal representation for every q =
w−1∑
i=0

diτ
i , di ∈ {0, 1}

1 Compute unsigned τ -adic expansion of k.

2 Divide τ -adic expansion into blocks of length w .

3 Substitute each block with minimal (τ, τ − 1)-expansion times
appropriate power of τ

Assuming the conjecture, d and max(bi) are both sublinear in log N(k)

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 5 / 13

Algorithms

Example

k = 6465, E1(F2163), τ = (1 +
√
−7)/2

partial reduction modulo (τ163 − 1)/(τ − 1) : k ≡ ξ = −104 + 50τ

Using block size 7 we have:

ξ = τ13 + τ12 + τ11 + τ9 + τ5 + τ2

= τ7
(
τ6 + τ5 + τ4 + τ2

)
+

(
τ5 + τ2

)
= τ7

(
τ(τ − 1) + τ(τ − 1)6

)
+

(
τ2(τ − 1)2

)
= τ8(τ − 1) + τ8(τ − 1)6 + τ2(τ − 1)2

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 6 / 13

Algorithms

Example

k = 6465, E1(F2163), τ = (1 +
√
−7)/2

partial reduction modulo (τ163 − 1)/(τ − 1) : k ≡ ξ = −104 + 50τ

Using block size 7 we have:

ξ = τ13 + τ12 + τ11 + τ9 + τ5 + τ2

= τ7
(
τ6 + τ5 + τ4 + τ2

)
+

(
τ5 + τ2

)

= τ7
(
τ(τ − 1) + τ(τ − 1)6

)
+

(
τ2(τ − 1)2

)
= τ8(τ − 1) + τ8(τ − 1)6 + τ2(τ − 1)2

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 6 / 13

Algorithms

Example

k = 6465, E1(F2163), τ = (1 +
√
−7)/2

partial reduction modulo (τ163 − 1)/(τ − 1) : k ≡ ξ = −104 + 50τ

Using block size 7 we have:

ξ = τ13 + τ12 + τ11 + τ9 + τ5 + τ2

= τ7
(
τ6 + τ5 + τ4 + τ2

)
+

(
τ5 + τ2

)
= τ7

(
τ(τ − 1) + τ(τ − 1)6

)

+
(
τ2(τ − 1)2

)
= τ8(τ − 1) + τ8(τ − 1)6 + τ2(τ − 1)2

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 6 / 13

Algorithms

Example

k = 6465, E1(F2163), τ = (1 +
√
−7)/2

partial reduction modulo (τ163 − 1)/(τ − 1) : k ≡ ξ = −104 + 50τ

Using block size 7 we have:

ξ = τ13 + τ12 + τ11 + τ9 + τ5 + τ2

= τ7
(
τ6 + τ5 + τ4 + τ2

)
+

(
τ5 + τ2

)
= τ7

(
τ(τ − 1) + τ(τ − 1)6

)
+

(
τ2(τ − 1)2

)

= τ8(τ − 1) + τ8(τ − 1)6 + τ2(τ − 1)2

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 6 / 13

Algorithms

Example

k = 6465, E1(F2163), τ = (1 +
√
−7)/2

partial reduction modulo (τ163 − 1)/(τ − 1) : k ≡ ξ = −104 + 50τ

Using block size 7 we have:

ξ = τ13 + τ12 + τ11 + τ9 + τ5 + τ2

= τ7
(
τ6 + τ5 + τ4 + τ2

)
+

(
τ5 + τ2

)
= τ7

(
τ(τ − 1) + τ(τ − 1)6

)
+

(
τ2(τ − 1)2

)
= τ8(τ − 1) + τ8(τ − 1)6 + τ2(τ − 1)2

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 6 / 13

Algorithms

Point Multiplication Algorithm

Given k =
d∑

i=1

siτ
ai (τ − 1)bi can write

k =

max(bi)∑
j=0

(τ − 1)j

max(ai,j)∑
i=1

si ,jτ
ai,j

Compute kP using max(bi) τ -adic expansions

Cost:

multiply by (τ − 1) : one τ, one point subtraction

overall: max(bi) + d − 1 point adds/subs

number of point additions required is sublinear in log N(k)

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 7 / 13

Algorithms

Numerical Evidence

Avg number of point adds to compute kP on Ea(F2m)

Blocking
m τNAF Greedy w = 5 w = 10 w = 16

163 54.25 36.37 47.86 40.00 37.22
233 77.59 49.31 66.23 54.96 50.76
283 94.25 58.64 79.37 65.66 60.49
409 137.12 81.84 113.64 93.63 85.68
571 190.25 111.90 154.98 127.21 117.04

Fewer point adds than τNAF in all cases

w = 5 requires < 1 KB ROM (no points need to be stored)

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 8 / 13

FPGA implementation Preliminaries

Computation of Algorithms

Specifications

NIST curve K-163
F2163 , normal basis

Point multiplication algorithm

Input: k, P
Output: Q = kP

P0 ← P; Q ← O
for i = 0 to max(bi) do

S ← ri (k)Pi

Pi+1 ← τPi − Pi

Q ← Q + S
end for

Computed one row, i.e.
(
∑

j ki ,jτ
j)(τ − 1)iP, at a time

Each row is computed as a
τNAF point multiplication

Point addition in mixed coordinates
(LD/A) and Frobenius map in LD

S ← S ± Pi ; S ← τS

Frobenius map and point
subtraction in A

Pi+1 ← τPi − Pi

Point addition in LD
Q ← Q + S

LD 7→ A mapping

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 9 / 13

FPGA implementation Preliminaries

Computation of Algorithms

Specifications

NIST curve K-163
F2163 , normal basis

Point multiplication algorithm

Input: k, P
Output: Q = kP

P0 ← P; Q ← O
for i = 0 to max(bi) do

S ← ri (k)Pi

Pi+1 ← τPi − Pi

Q ← Q + S
end for

Computed one row, i.e.
(
∑

j ki ,jτ
j)(τ − 1)iP, at a time

Each row is computed as a
τNAF point multiplication

Point addition in mixed coordinates
(LD/A) and Frobenius map in LD

S ← S ± Pi ; S ← τS

Frobenius map and point
subtraction in A

Pi+1 ← τPi − Pi

Point addition in LD
Q ← Q + S

LD 7→ A mapping

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 9 / 13

FPGA implementation Preliminaries

Computation of Algorithms

Specifications

NIST curve K-163
F2163 , normal basis

Point multiplication algorithm

Input: k, P
Output: Q = kP

P0 ← P; Q ← O
for i = 0 to max(bi) do

S ← ri (k)Pi

Pi+1 ← τPi − Pi

Q ← Q + S
end for

Computed one row, i.e.
(
∑

j ki ,jτ
j)(τ − 1)iP, at a time

Each row is computed as a
τNAF point multiplication

Point addition in mixed coordinates
(LD/A) and Frobenius map in LD

S ← S ± Pi ; S ← τS

Frobenius map and point
subtraction in A

Pi+1 ← τPi − Pi

Point addition in LD
Q ← Q + S

LD 7→ A mapping

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 9 / 13

FPGA implementation Preliminaries

Computation of Algorithms

Specifications

NIST curve K-163
F2163 , normal basis

Point multiplication algorithm

Input: k, P
Output: Q = kP

P0 ← P; Q ← O
for i = 0 to max(bi) do

S ← ri (k)Pi

Pi+1 ← τPi − Pi

Q ← Q + S
end for

Computed one row, i.e.
(
∑

j ki ,jτ
j)(τ − 1)iP, at a time

Each row is computed as a
τNAF point multiplication

Point addition in mixed coordinates
(LD/A) and Frobenius map in LD

S ← S ± Pi ; S ← τS

Frobenius map and point
subtraction in A

Pi+1 ← τPi − Pi

Point addition in LD
Q ← Q + S

LD 7→ A mapping

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 9 / 13

FPGA implementation Preliminaries

Computation of Algorithms

Specifications

NIST curve K-163
F2163 , normal basis

Point multiplication algorithm

Input: k, P
Output: Q = kP

P0 ← P; Q ← O
for i = 0 to max(bi) do

S ← ri (k)Pi

Pi+1 ← τPi − Pi

Q ← Q + S
end for

Computed one row, i.e.
(
∑

j ki ,jτ
j)(τ − 1)iP, at a time

Each row is computed as a
τNAF point multiplication

Point addition in mixed coordinates
(LD/A) and Frobenius map in LD

S ← S ± Pi ; S ← τS

Frobenius map and point
subtraction in A

Pi+1 ← τPi − Pi

Point addition in LD
Q ← Q + S

LD 7→ A mapping

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 9 / 13

FPGA implementation Preliminaries

Computation of Algorithms

Specifications

NIST curve K-163
F2163 , normal basis

Point multiplication algorithm

Input: k, P
Output: Q = kP

P0 ← P; Q ← O
for i = 0 to max(bi) do

S ← ri (k)Pi

Pi+1 ← τPi − Pi

Q ← Q + S
end for

Computed one row, i.e.
(
∑

j ki ,jτ
j)(τ − 1)iP, at a time

Each row is computed as a
τNAF point multiplication

Point addition in mixed coordinates
(LD/A) and Frobenius map in LD

S ← S ± Pi ; S ← τS

Frobenius map and point
subtraction in A

Pi+1 ← τPi − Pi

Point addition in LD
Q ← Q + S

LD 7→ A mapping

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 9 / 13

FPGA implementation Architecture

Field arithmetic processor (FAP)

Storage

RAM

dual-port

RAM

Control
logic

DATA IN

DATA OUT

Adder Multiplier Squarer
512 ×m-bit

m

mm

m

m

1231

ADDRA
9

ADDRB
9

OPER
4

SHIFT
6

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 10 / 13

FPGA implementation Architecture

Field arithmetic processor (FAP)

Storage

RAM

dual-port

RAM

Control
logic

DATA IN

DATA OUT

Adder Multiplier Squarer
512 ×m-bit

m

mm

m

m

1231

ADDRA
9

ADDRB
9

OPER
4

SHIFT
6

Multiplier

Digit-serial Massey-Omura multiplier
Latency: 9 clock cycles

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 10 / 13

FPGA implementation Architecture

Field arithmetic processor (FAP)

Storage

RAM

dual-port

RAM

Control
logic

DATA IN

DATA OUT

Adder Multiplier Squarer
512 ×m-bit

m

mm

m

m

1231

ADDRA
9

ADDRB
9

OPER
4

SHIFT
6

Adder and squarer

Adder: bitwise exclusive-or (xor)
Squarer: shifter (max shift 26 − 1)

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 10 / 13

FPGA implementation Architecture

Field arithmetic processor (FAP)

Storage

RAM

dual-port

RAM

Control
logic

DATA IN

DATA OUT

Adder Multiplier Squarer
512 ×m-bit

m

mm

m

m

1231

ADDRA
9

ADDRB
9

OPER
4

SHIFT
6

Storage RAM

Dual-port RAM implemented in BlockRAMs
5 BlockRAMs needed (One B-RAM: 512× 36-bits)

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 10 / 13

FPGA implementation Architecture

System architecture

{τ, τ − 1}-converter

Converts k into
{τ, τ − 1}-expansion

Partial reduction (Solinas,
2000), computation of τ -adic
expansion and blocking
algorithm (w = 10)

Control logic and FAP

FAP controlled by
hand-optimized control
sequences stored in a ROM
(BlockRAM)

k parsed and the ROM
controlled by an FSM

Converter and the rest of the design use different clocks

Latency of a point multiplication (excluding conversion):

LkP = 104 d + 243 max(bi) + 84

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 11 / 13

FPGA implementation Results

Results

Xilinx Virtex-II XC2V2000-6

Maximum clock frequency: 128 MHz
Resource requirements: 6,494 slices and 6 BlockRAMs

Converter: 88 MHz, 2,251 slices, 2 BlockRAMs and 2 multipliers

One conversion requires 3.81 µs

max(bi) d LD/A A LD LkP Time (µs)

0 54.33 53.33 0 0 5735 44.80
2 39.47 36.47 2 2 4675 36.52
3 36.18 32.18 3 3 4576 35.75
4 34.74 29.74 4 4 4669 36.48
5 33.42 27.42 5 5 4775 37.30
6 32.22 25.22 6 6 4893 38.23

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 12 / 13

Future Work

Future work

Compare with ASIACRYPT 2006 (Avanzi, Dimitrov, Doche, Sica):

proof of sublinear density for 2 complex bases

memory-free conversion algorithm

Window method analogues (fixed base point):

two-dimensional windows?

Analogue for hyperelliptic curves?

Implementation improvements:

Computing rows in parallel leads to shorter latency

Polynomial basis implementation

Dimitrov et al. (University of Calgary) CHES 2006 October 13, 2006 13 / 13

	Introduction
	Theoretical Results
	Algorithms
	FPGA implementation
	Preliminaries
	Architecture
	Results

	Future Work

